Motion in a Straight Line Numerical

Numerical Explained on the Topics

- Average velocity / Speed Numerical
- Kinematic equations
- Maximum height and Time of flight
- NEET old paper numerical
- **Text book backside problems
- Freely falling body

Numerical Explained on the Topics

- Average velocity / Speed Numerical
- Kinematic equations
- Maximum height and Time of flight
- NEET old paper numerical
- **Text book backside problems
- Freely falling body

Average Velocity / Speed Numerical

If s_1 , s_2 , s_3 ,... s_n are the distances travelled by a particle in the time intervals t_1 , t_2 , t_3 ,... t_n respectively then,

$$Average \ speed = \frac{Total \ distance \ travelled}{Total \ time}$$

$$Average \ Speed = \frac{s_1 + s_2 + s_3 + \dots + s_n}{t_1 + t_2 + t_3 + \dots + t_n}$$

If s_1 and s_2 are the distances travelled by a particle in the time intervals t_1 and t_2 respectively then,

$$Average Speed = \frac{s_1 + s_2}{t_1 + t_2}$$
www.physicspower.com

If v_1 and v_2 are the velocities/speeds and t_1 and t_2 are the time intervals respectively then,

Average Velocity =
$$\frac{v_1 t_1 + v_2 t_2}{t_1 + t_2}$$

If s_1 and s_2 are the distances travelled by a particle with velocities/speeds v_1 and v_2 respectively then,

Average Velocity/Speed vavg =
$$\frac{s_1 + s_2}{t_1 + t_2}$$

$$v_{avg} = \frac{s_1 + s_2}{\frac{S_1}{v_1} + \frac{S_2}{v_2}}$$

If a cyclist takes one minute to complete half revolution on a circular path 120 m radius. What is the average velocity?

Solution: Given time t = 1 min = 60 sec

$$Average\ velocity\ =\ \frac{Total\ displacement}{Total\ time}$$

$$\frac{V_{avg}}{t} = \frac{29L}{t} = \frac{2 \times 120}{60} = 4 \text{ m/s}$$

If a cyclist takes two minutes to complete half revolution on a circular path 120 m radius. What is the average speed?

Solution:

Given time
$$t = 2 min = 2 \times 60 = 120 sec$$

$$Average \ speed = \frac{Total \ distance \ travelled}{Total \ time}$$

$$V_{avg} = \frac{TTR}{t} = \frac{3.14 \times 120}{120}$$
$$= 3.14 \text{ m/s}$$

A person travels along a straight road for the half time with a velocity v_1 and the next half time with a velocity v_2 . Find the mean velocity of the man?

Solution:

$$t_{1} = \frac{t}{2}, \quad t_{2} = \frac{t}{2}$$

$$V_{avg} = \frac{s_{1} + s_{2}}{t_{1} + t_{2}} = \frac{v_{1}t_{1} + v_{2}t_{2}}{t_{1} + t_{2}}$$

$$\frac{V_1 = \frac{S_1}{L_1}}{\Rightarrow S_1 = \frac{V_1}{L_1}}$$

$$\frac{S_2 = \frac{V_2}{L_1}}{\Rightarrow S_2 = \frac{V_2}{L_2}}$$

$$\frac{v_{avy}}{t_1 + v_2 t_2} = \frac{v_1(t_1 + v_2 t_2)}{t_1 + t_2}$$

$$= \frac{v_1(t_2) + v_2(t_2)}{t_2 + t_2}$$

$$= \frac{t_2(v_1 + v_2)}{t} = \frac{v_1 + v_2}{t}$$

A person travels along a straight road for the half distance with a velocity v_1 and the next half distance with a velocity v_2 . Find the mean velocity of the man?

Solution:

$$\frac{v_{\text{avg}}}{t_1 + t_2} = \frac{s_1 + s_2}{t_1 + t_2}$$

$$\Rightarrow V_{avg} = \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2(v_i)} + \frac{1}{2v_1}} = \frac{\frac{1}{2} \left[\frac{1}{v_i} + \frac{1}{v_1}\right]}{\frac{1}{2(v_i)} + \frac{1}{2v_1}}$$

$$\frac{1}{y_{1}} = \frac{2y_{1}}{y_{1}+y_{2}}$$

**A car travelled the first third of a distance S at a speed of 10 kmph, the second third at a speed of 20 kmph and the last third at a speed of 60 kmph. Calculate the mean speed of the vehicle over the entire distance S.

Solution:

distance travelled,
$$s_1 = \frac{s}{3}$$
 velocity, $v_1 = 10$ kmph distance, $s_2 = \frac{s}{3}$ velocity, $v_2 = 20$ kmph distance, $s_3 = \frac{s}{3}$ velocity, $v_3 = 60$ kmph

Average velocity = $\frac{\text{total distance}}{\text{total time}}$

$$\frac{V_{avg}}{t_1 + t_1 + t_3} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3}$$

$$= \frac{x_1 + x_2 + x_3}{x_2 + x_2 + x_3}$$

$$= \frac{\frac{3}{3} + \frac{3}{3} + \frac{5}{3}}{\frac{3}{3(10)} + \frac{5}{3(20)} + \frac{5}{3(60)}}$$

$$= \frac{3}{3\left(\frac{1}{10} + \frac{1}{10} + \frac{1}{60}\right)} = \frac{3}{\frac{6+3+1}{60}}$$

$$=\frac{3\times60}{10}$$

$$= 18 \, \text{km/hr}$$

**A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km/h. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km/h. What is the (a) magnitude of average velocity and (b) average speed of the man over the time interval o to 50 minutes

Solution:
$$t_1 = \frac{\text{distance}}{\text{speed}} = \frac{2.5}{5} = \frac{1}{2} \text{ h}$$

$$t_2 = \frac{2.5}{7.5} = \frac{1}{3}h$$

.. Total time taken = $t_1 + t_2 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}h = 50$ min.

Total distance travelled = 2.5 + 2.5 = 5 km

a) Average velocity =
$$\frac{\text{displacement}}{\text{time}}$$
 = 0

b) Average speed =
$$\frac{\text{distance}}{\text{time}} = \frac{5}{5/6} = 6 \text{ km/h}$$

A car covers the first half of the distance between two places at 40 km/h and other half at 60 km/h. Find the average speed of the car.

Solution:

$$v_{avg} = \frac{2v_1v_2}{v_1 + v_2} = \frac{2 \times 40 \times 60}{40 + 60}$$

= 48 km/h

**A motorist drives north for 30 min at 85 km/h and then stops for 15 min. He continues travelling north and cover 130 km in 2 hours. What is his total displacement and average velocity?

Solution:
$$s = s_1 + s_2 + s_3$$

In first part:

Velocity, $v_1 = 85$ kmph; Time, $t_1 = 30$ min

Distance travelled,
$$s_1 = v_1 t_1 = 85 \times \frac{30}{60} = 42.5 \text{ km}$$

In second part:

Distance travelled, $s_2 = 0$; Time, $t_2 = 15.0$ min.

A motorist drives north for 30 min at 85 km/h and then stops for 15 min. He continues travelling north and cover 130 km in 2 hours. What is his total displacement and average velocity?

In third part:

Distance travelled, $s_3 = 130 \text{ km}$; Time, $t_3 = 120 \text{ min} = 2 \text{ hours}$

Total distance of the motorist,

$$= 42.5 + 0 + 130 = 172.5 \text{ km}$$

Total time travelled.

$$t = t_1 + t_2 + t_3 = 30 + 15 + 120 = 165$$
 minutes

= 2 hrs 45 minutes

$$= 2\frac{3}{4}$$
 hrs. $= \frac{11}{4}$ hrs.

 $\therefore \text{ Average velocity, } v_{avg} = \frac{\text{total displacement}}{\text{total time}}$

$$=\frac{172.5}{(11/4)}$$

= 62.7 kmph

Numerical on

$$v = u + at$$

$$v^2 - u^2 = 2aS$$

$$S = ut + \frac{1}{2}at^2$$

$$S_{n^{th}} = u + \frac{a}{2}(2n - 1)$$

The displacement S of a particle at the instant when its velocity v is given by $v = \sqrt{8S+16}$. Find its acceleration and initial velocity.

Solution:

Acceleration a = ?Initial velocity u = ?

$$V = \sqrt{85 + 16}$$

$$\Rightarrow v^2 = 2(4) + 4^2$$

$$v^{2} - u^{2} = 2a5$$

The displacement s of a particle at the instant when its velocity v is given by $v = \sqrt{4S+4}$. Displacement of the particle at time t = 0 is S = 0. Find the displacement of particle at time t = 2 sec.

 $S = ut + \frac{1}{2}at^2$

Solution:

$$V = \sqrt{45 + 4} \implies V^2 = 45 + 2^2$$

$$\Rightarrow V^2 - 2^2 = 2(2) \le 3$$

$$\Rightarrow$$
 $\sqrt{2} - 2^2 = 2(2).5$

$$v^2 - u^2 = 2a5$$

$$3 = ut + \int_{-\infty}^{\infty} dt^{2}$$

$$= (2)(2) + \int_{-\infty}^{\infty} (2)(2)^{2}$$

$$= 4 + 4$$

$$= 8 m$$

**A bullet moving with a speed of 150 m/s strikes a tree and penetrates 3.5 cm before stopping. What is the magnitude of its retardation in the tree and the time taken for it to stop after striking the tree?

Solution:

Velocity of bullet, u = 150 m/s

Final velocity, v = 0

Distance travelled, $s = 3.5 \text{ cm} = 3.5 \times 10^{-2} \text{ m}$

Retardation a = ? Time taken to stop t = ?

$$v^2 - u^2 = 2aS$$

Velocity of bullet, u = 150 m/s

Final velocity, v = 0

Distance travelled, $s = 3.5 \text{ cm} = 3.5 \times 10^{-2} \text{ m}$

$$a = \frac{v^2 - u^2}{2s} = \frac{0^2 - 150^2}{2 \times 3.50 \times 10^{-2}} = \frac{22500}{7 \times 10^{-2}}$$

 $= -3.214 \times 10^5 \,\mathrm{m}/\mathrm{sec}^2$

$$v = u + at$$

Time taken to stop,
$$t = \frac{v - u}{a} = \frac{-150}{-3.214 \times 10^5} = 4.67 \times 10^{-4} \text{ sec.}$$

NEET Old Paper Bits

A boy standing at the top of a tower of 20 m height drops a stone. Assuming, $g = 10 \text{ m/s}^2$, find the velocity with which it hits the ground?

Solution: Given,
$$g = 10 \text{ m/s}^2$$

 $h = 20 \text{ m}$ $u = 0$

$$v^2 - u^2 = 2aS \qquad v = \sqrt{2gh}$$

$$v = \sqrt{2gh}$$

$$= \sqrt{2 \times 10 \times 20}$$

$$= \sqrt{400}$$

$$= 20 \text{ m/s}$$

A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 m/s to 20 m/s while passing through a distance 135 m in t sec. What is the

value of t?

NEET - 2008

Solution:

$$v^2 - u^2 = 2as$$

$$(20)^2 - (10)^2 = 2 \times a \times 135$$

$$\Rightarrow \frac{300}{270} = a \Rightarrow a = \frac{10}{9} \text{ m/s}$$

v - u = at

$$v - u = at$$

$$20 - 10 = \frac{10}{9} \times t$$

$$\Rightarrow t = 9 \text{ s}$$

Two bodies of A and B of masses 1 kg and 3 kg are dropped from heights of 16 m and 25 m respectively. The ratio of the time taken by them to reach the ground is.

NEET - 2006

Solution:

Given,
$$h_1 = 16 \text{ m}$$
, $h_2 = 25 \text{ m}$

$$h = ut + \frac{1}{2}gt^2$$
 $u = 0$ (initial velocity)

$$h = 0 + \frac{1}{2} gt^2 \qquad \therefore \qquad \frac{h_1}{h_2} = \left(\frac{t_1}{t_2}\right)^2$$

$$\frac{h_1}{h_2} = \left(\frac{t_1}{t_2}\right)^2$$

$$\frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}}$$

$$=\sqrt{\frac{16}{25}}$$

$$=\frac{4}{5}$$

$$S_{n^{th}} = u + \frac{a}{2}(2n - 1)$$

The distance travelled by a particle starting from rest and moving with an acceleration 4/3 m/s² in the third second is

NEET - 2008

Solution:

Here,
$$u = 0$$
, $a = \frac{4}{3}$

$$\therefore s_3 = 0 + \frac{1}{2} \times \frac{4}{3} \times (6 - 1)$$
$$= \frac{10}{3} \text{ m}$$

 $S_{n^{th}} = u + \frac{a}{2}(2n - 1)$

What will be the ratio of the distance moved by a freely falling body from rest in 4th and 5th second of journey?

Solution:

AIPMT = NEET - 1989

$$s_n = u + \frac{1}{2}a(2n-1)$$

Here, u = 0, acceleration due to gravity $a = 9.8 \text{ m/s}^2$

For
$$4^{th}$$
s, $s_4 = \frac{1}{2} \times 9.8 (2 \times 4 - 1)$
and for 5^{th} s, $s_5 = \frac{1}{2} \times 9.8 (2 \times 5 - 1)$

$$\frac{s_4}{s_5} = \frac{\frac{1}{2} \times 9.8 (2 \times 4 - 1)}{\frac{1}{2} \times 9.8 (2 \times 5 - 1)}$$
$$= \frac{7}{2}$$

A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 sec, another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18 sec. What is the value of v?

NEET - 2010

Solution: For first ball, u = 0

$$s_1 = \frac{1}{2}gt_1^2$$

$$= \frac{1}{2} \times g(18)^2$$
AAAAAA BHYSIGS DOWER COM

For second ball, initial velocity = v

$$s_2 = vt_2 + \frac{1}{2}gt_2^2$$
$$t_2 = 18 - 6 = 12 \text{ s}$$

$$s_2 = v \times 12 + \frac{1}{2} g (12)^2$$

$$s_1 = s_2$$

$$\frac{1}{2}g(18)^2 = 12v + \frac{1}{2}g(12)^2$$

$$12v = \frac{g}{2}(18^2 - 12^2)$$

$$12v = 5(324 - 144)$$

$$12v = 5 \times 180 \implies v = 74 \text{ ms}^{-1}$$

Maximum Height & Time of Flight

If a body thrown with a velocity 20 m/s vertically upward, find the maximum height travelled by the body.

Solution:

Given initial velocity u = 20 m/s

$$H_{\max} = \frac{u^2}{2g}$$

$$H_{\text{max}} = \frac{20^2}{2 \times 10}$$

$$=\frac{400}{2\times10} = 20 m$$

If a particle thrown vertically upward with a velocity 10 m/s, what is the time of flight?

Solution:

Given, initial velocity u = 10 m/s

$$T = \frac{2(10)}{10}$$

$$= 2 sec$$

If a body thrown vertically upward with velocity u, what is the velocity of the particle at half of the maximum height?

Solution:

Given initial velocity = u Acceleration a = -g

$$v^{2} - u^{2} = 2aS \qquad \Rightarrow v^{2} = u^{2} + 2aS$$

$$v^{2} = u^{2} + 2(-g)\frac{1}{2}\frac{u^{2}}{2g}$$

$$v^{2} = u^{2} - \frac{u^{2}}{2}$$

$$\Rightarrow v^2 = \frac{u^2}{2}$$

$$\Rightarrow v = \frac{u}{\sqrt{2}}$$

THANKYOU